
Contents

1 Module Hweak : The type of the elements stored in the table. 1

2 Module Weak_memo : The memo class provides an easy way to remember the real

class of an object. 2

1 Module Hweak : The type of the elements stored in the table.

module type S =

sig

type key

The type of the elements stored in the table.

type ’a t

The type of weak hash tables from type key to type ’a. if etheir the key or the data of
a binding is freed by the GC, the binding is silently droped

val create : int -> ’a t

create n creates a new empty weak hash table, of initial size n. The table will grow as
needed.

val clear : ’a t -> unit

Remove all elements from the table.

val add : ’a t -> key -> ’a -> unit

add tbl key x adds a binding of k to x in table t. Previous binding for x are not
removed, and which binding will be find by next find (or merge) is unspecified

val replace : ’a t -> key -> ’a -> unit

replace tbl key x replace the current binding of key in table t by a binding from key

to x. If there was no such binding a new one is still created. This new binding will be
the one find by next find (and merge)

val remove : ’a t -> key -> unit

remove tbl x removes the current binding of x in tbl. if there is another binding of x
in tbl then it became the current one. It does nothing if x is not bound in tbl

val merge : ’a t -> key -> ’a -> ’a

merge tbl key x returns the current binding of k in t if any, or else adds a bindding of
k to x in the table and return x.

1



val find : ’a t -> key -> ’a

find tbl key returns the current binding of k in t if any, otherwise raise Not_found

val find_all : ’a t -> key -> ’a list

find tbl key returns the current binding of k in t if any, otherwise raise Not_found

val mem : ’a t -> key -> bool

mem tbl x checks if x is bound in tbl.

val iter : (key -> ’a -> unit) -> ’a t -> unit

iter f tbl applies f to all bindings in table tbl. f receives the key as first argument,
and the associated value as second argument. The order in which the bindings are
passed to f is unspecified. Each binding is presented exactly once to f.

val fold : (key -> ’a -> ’b -> ’b) -> ’a t -> ’b -> ’b

fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN

are the keys of all bindings in tbl, and d1 ... dN are the associated values. The
order in which the bindings are passed to f is unspecified. Each binding is presented
exactly once to f.

val count : ’a t -> int

val stats : ’a t -> int * int * int * int * int * int

some statistic function

end

module Make :

functor (H : Hashtbl.HashedType) -> S with type key = H.t

2 Module Weak_memo : The memo class provides an easy way to

remember the real class of an object.

This module contain the Weak_memo.c class that contain object that can be recover latter from the
same object with a different type. An object that is into a Weak_memo.c object is not prevented
from recolection by the Gc.

class < .. > c : int ->

object

method add : (< .. > as ’a) -> unit

Add an object to the memo. This won’t prevent this object to be recollected by the Gc.

Do nothing if the object is already there.

2



method find : ’b. (< .. > as ’b) -> ’a

Find if the object is in the memo. If yes then return it (with the good type).

Otherwise raise Not_found

method mem : ’c. (< .. > as ’c) -> bool

Return true if there is an object in the memo that is equal to the object given as
argument. Return false otherwise.

method remove : ’d. (< .. > as ’d) -> unit

Remove an object from the memo. If it is not there, do nothing

method clear : unit -> unit

Empty the memo object.

method count : int

Return the number of object in the memo.

end

The memo class.

new Weak_memo.c size create a new memo object with an original size of size. It will grow
as needed.

3


